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Abstract

Event detection in spatio-temporal data has been a growing research topic in various

application fields such as environment, weather, traffic or smartphone data. Most of

research articles in the field tailor a specific technique to address a single problem. The

reasons why a certain category of algorithms are used over others are often unclear, and

no global perspective is adopted. Our goal is to give a framework to the space-time event

detection problem, and to show that elements from different techniques can be combined

to fit any given problem. First we review the literature from a theoretical point of view.

Then we implement two of the most prominent existing methods on urban taxi data to

identify the influence of their different components.
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Chapter 1

Introduction

Event detection consists in pointing out regular or irregular patterns in datasets. It
includes the field of outlier or anomaly detection, which focuses on irregular events.
Literature is vast on the subject for general datasets, and builds on a broad machine
learning and statistics background. In the past decade, more and more techniques have
been applied to spatiotemporal data. A typical research article in the field presents a
technique adapted to a specific application example. No study compares the different
available techniques together. Therefore, one may be in trouble when trying to create an
event detection tool to be applied to a problem different from those studied in literature.

The goal of our study is to understand the problem definition of event detection and de-
termine the specificities of two of the most prominent techniques available today. What
sorts of events are detected by a particular technique? On which criteria can different
techniques be compared? How robust are those methods, and how can parameter design
influence their results?

Our study is both theoretical and practical. Implementation is required since one could
only vaguely predict the results of a technique from the theoretical study of its algo-
rithms. We chose to implement two techniques representative of broader event detection
categories: scan statistics and clustering. The input data is urban New-York City taxi
data. One instance of the dataset accounts for the aggregated density of taxi pickups
and drop-offs in a predefined area around a space point, at a given time. This data is
quite simple and standard, so the differences between techniques appear clearly and may
not depend on the better fit between the data and a particular method.

In a first part, we will split the problem of event detection into subparts, and list the
main different possibilities available for each of those subparts. Then, we will review the
main state-of-the-art algorithms ordered by category. In the rest of the report, we will
implement two techniques. The first is the Space-Time Permutation Model of SaTScan,
the most known scan statistics technique. The second-one is based on DBSCAN, a
classic clustering algorithm.

1.1 Scope specification

In our study, we will only consider one type of input data: space time points with one
extra numerical attribute referred as numerical univariate data. This means that an

1
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instance of the dataset we consider has the format <x, y, t, v> where x,y are the spatial
coordinates, t the timestamp, and v a numerical value in our study in will be taxi
density. Such data is the most fundamental format that can be dealt with, that is why
we chose it in order to study the problem definition of anomaly detection. Techniques
handling more complex data input trajectories and graphs often build on the methods
of point data anomaly detection.



Chapter 2

Subparts of a Space-Time Event
Detection Problem

2.1 Problem Framework

A space-time anomaly detection problem can be split into distinct problems. Studying
those independent subparts may allow one to understand the results outputted and de-
sign their own anomaly detection technique. To this date no survey on spatio-temporal
anomaly detection has been done, so this work was achieved by processing various re-
search articles. Below is the framework of our analysis, each box on the left being a
major subpart of the global problem.

Figure 2.1: Event detection problem framework

We will now focus on each subproblem and highlight solutions that can be found in
literature.

3
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2.2 Space-Time Data Handling

2.2.1 Space and Time handling

Anomaly detection may take into account space dependencies, temporal dependencies
or both. Techniques taking into account both space and time often are an extension
of a space or a time anomaly detection technique. We focus on space-time techniques.
However, it should be noted that temporal techniques can be used for parallel monitor-
ing. That is detecting anomalies at every spatial point of the data set independently.
Such approach is adopted in [1] for traffic data, in [2] for environment data and in [3] for
sensor data. Those techniques have lower detection power because they examine spatial
points individually, but they are less computationally expensive.

2.2.2 Time Management

For space-time techniques, time can be handled in different ways. i.) One option is
to perform spatial analysis at each time step, and then compare time steps with each
other. In [4], Wu et al. compares the spatial region anomalies detected in consecutive
time steps. Doraiswamy et al. in [5] compares space topological profiles of all time
steps between each other, which allows to also detect events with a non-continuous
timespan. Generally speaking, any spatial anomaly detection technique could be used
this way to create a space-time technique. ii.) As pointed out in [6], time can be treated
as an additional dimension of space. This is the case of SaTScan, a prominent scan
statistics technique [7]. For spatial analysis, SaTScan performs a scan of 2D regions on
the monitored area. For space-time analysis, the scan is performed on 3D regions. Iii.)
A less standardized time management technique is the use of time neighborhoods.

2.2.3 Data Input

The three main space-time data inputs are point or grid data, trajectory data, and
graph data. For space-time data, graph connectivity may represent spatial distance, or a
spatial network such as a road or a water network for instance. Many specific techniques
are developed for graph and trajectory data. Description of those different data types
can be found for instance in [8].

2.3 Event Definition

The event definition determines which type of anomaly will be detected.

2.3.1 Event Extension

The space extension of the event may be a single location or a region. Region detection
techniques are less sensitive to grid resolution for space time grid data - and are assumed
to detect subtler events than point detection techniques. Indeed, a group of slightly
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anomalous points can be detected as an anomalous region, while every single instance
appears quite normal.

The time extension of the event may be a single time step, an interval or an irregular
time steps set. For example, SaTScan defines an event as an anomalous region spanning
over an interval of time. Birant et al. in [9] look for anomalies which are punctual both
in space and time. Chawla et al. in [10] output anomalous single spatial points which
spans over an interval of time.

2.3.2 Event Persistence

A technique may define an event as persistent or emerging. A persistent event for
numerical data is a shift in values which lasts in time, and may disappear after some
duration. This is the standard definition adopted in literature. An emerging event
consists in a gradual increase in values. Such a form of event is addressed for instance
in [11].

(a) Persistent (b) Emerging

Persistence is also a property of the shape of the events detected. A persistent shape
events keeps the same shape during its timespan. In [4], Wu et al. track moving
anomalies, which is particularly adapted to weather phenomena. An event can also be
fixed but shrinking or expanding.

It should be noted that a persistent technique is a good first approach, since it may still
detect though maybe inaccurately emerging events.

2.4 Baseline

In order to detect anomalies, a definition of normal behavior must be adopted, even if
it is very simple. This is what we will call baseline. The baseline is a crucial point of
the detection technique, since it indirectly defines the anomalous behaviors that will be
detected.

2.4.1 Forecasting Model

Most baselines are computed using forecasting models. Various forecasting techniques
can be used. Basic ones include considering the mean, or a weighted mean taking into
accounts effects such as day-of-week. One can perform time series analysis, this is what
Guo et al. use to compute expected values for traffic data in [1]. Zhang et al. also retort
to time series forecast to detect space-point anomalies in wireless sensor data in [12].
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Another possibility is to fit a statistical model to represent regular data. The standard
model for counts data i.e. positive numerical values is the Poison model. For instance,
Kulldorff used it in the original version of SaTScan in [13].

2.4.2 Method of comparison to baseline

Once the baseline is computed, values of candidate anomalous points can be compared
to it in different ways. i.) The simplest option is to examine the ratio or the difference
of point value and baseline, and define a threshold over which the point is considered
anomalous. This is what is used in [2, 5, 10, 14]. A common threshold is 3 standard
deviations of the set of values taken by the spatial point. ii.) A statistical test can
be performed in order to assess whether the difference between value and baseline is
significant, as in [13, 15]. This method gives a metric of anomaly significance.

2.4.3 Context

Baseline can be global or local. A local baseline may take into account spatial and/or
time neighborhood. This allows the event detection technique to spot anomalies which
would not have been detected while being compared to the whole dataset. Authors of
[11, 13] fit a Poison model to all of the data except the suspected anomalous region, so
the baseline is global. Authors of [15–18] take into account a space-time neighborhood
around the suspected points. Wu et al in [4] performs a spatial scan statistic at each
time step independently, so her approach is time contextual the time neighborhood
being restricted to the current time step but spatially global.

Literature also points to research in space-time neighborhood discovery, see [19, 20].
Discovering neighborhoods which fit the structure of the data may allow to use better
calibrated context for baseline computing.

2.5 Other criteria

Two additional criteria should be mentioned. They do not alter the nature of the
problem dramatically, but could be taken into account in particular cases.

2.5.1 On/Offline

Input data can be a stream of data or a fixed dataset. Processing streaming data
adds computational constraints. It is common in the analysis of sensor data. Online
techniques can consist in offline techniques adapted to streaming data. For instance
in [21] Principal Component Analysis classically used for offline anomaly detection is
adapted so that it can be updated with the stream.
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2.5.2 Anomalousness score

Anomaly detection techniques can either output labels normal or anomlaous - or anoma-
lousness scores. Label techniques can often be considered as scoring techniques since they
label suspected anomalous points when a certain metric is above a predefined threshold.

2.6 Combining independent subparts

The author of a research article in space-time anomaly detection typically presents a fully
built technique and implements it on test data. Having the independent subparts that
we distinguished in mind, one could adapt a technique to its own needs. For instance,
a global baseline could be changed for a local one; a technique that studies adjacent
time frames could be changed to study time steps of only the same days of the week.
Therefore, it is crucial to understand the impact of each solution of the sub-problems
we highlighted in order to combine them efficiently. This is one of the purpose of the
implementation task that we led.



Chapter 3

Spatio-temporal Event Detection
Categories

The approaches adopted to address the problems identified above can be classified into
broad categories. Several classifications of general anomaly detection can be found in
[22–24]. Among the categories pointed out in those surveys, some do not apply to space
time data. We highlight the most prominent categories applied to point numerical uni-
variate spatio-temporal data.

Supervision

We consider only unsupervised techniques. Indeed, we assume that the events present
in the dataset are not previously known. This is not a significant restriction because
almost all techniques in our scope are unsupervised.

3.1 Statistical-based methods

Statistical based methods fit a model to the input data to represent the normal behavior.
Then they compare points values to the baseline with a statistical test. The assumption
of statistical-based techniques is that normal instances occur with high probability and
anomalous instance occur with low probability. One of the most popular tests used
is the Likelihood Ratio Test, detailed in [25] and used in [11, 13, 15]. For statistical
testing, the number of tests performed is large: one for every candidate point or region
anomalies. So a simple test process would encounter a lot of false positives simply by
chance this is called multiple testing. That is why replication and empirical p-values
can be used to ensure the statistical significance of the tests performed.

The most prominent type of statistical-based method is scan statistics. It was popu-
larized in [13], and was widely applied to a great variety of use cases because of the
availability of the SaTScan executable software at [7]. Scan statistics assess the anoma-
lousness of 3d space-time regions. Different region shapes are looked for in literature.
SaTScan looks for circle and ellipse shapes. Neill et al in [26] and Pang et al in [11] look
for rectangles in grid data. Irregular region searching is addressed by Tango et al. in
[27].

8
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Regions may be scanned following a brute-force approach, but more efficient scanning
was developed. Pang et al. in [11] develop a pruning strategy that discards irrelevant
regions. In [28], Neill et al. introduce the Linear Time Subset Scanning property. It
states that under certain assumptions, the most anomalous region of a dataset is a sub-
list [r1, r2, ..., rk] for a certain k, where ri are the instances sorted according a certain
priority function. This property is usually not valid on whole real life datasets, but it
can be used at different steps of the scanning algorithm to reduce computation time.

Most of the literature focuses on parametric models, but non parametric also exist, see
for instance [29].

The advantage of statistical techniques is that they provide metrics to assess the anoma-
lousness of the events outputted. The main limit is that modelling normal behavior is
often approximate.

3.2 Clustering-based techniques

A clustering-based space-time anomaly detection technique is composed of two parts.
First, a clustering algorithm is performed. Then, anomalousness is assessed among
anomalous candidates.

3.2.1 Clustering Task

For an overview of space-time clustering, see [6, 8]. The most commonly used algorithms
for space-time clustering are density based algorithms, in particular DBSCAN due to
its efficiency and limited number of pre-set parameters. It was adopted to space-time
data in [9]. In [30] another variant named ST-LDBCAN is developed. The DB-SMOT
algorithm is presented in [31].

3.2.2 Assessing Anomalousness

There are three main ways to search through clusters for anomalies.
i.) The anomaly candidates can be the unclustered points. This approach usually limits
the detection to individual points no spatial region event can be detected. This is the
case of [32] and [30]. ii.) The candidates can be the border points inside clusters.
iii.) The candidates can be the clusters themselves. It allows the detection of region
events. In [14], mean values of outputted clusters are examined and the most extreme
clusters are outputted as anomalies. Telang et al in [15] perform statistical testing to
determine whether the homogeneous clusters they compute are anomalous.

The pro of clustering techniques is that they are easy to implement, and they can
be combined with different methods to assess anomalousness of candidate points or
regions. The main drawback is that techniques which consider unclustered points detect
anomalies as a by product of the clustering algorithm, so they are not optimized for
anomaly detection.
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3.3 Spectral Techniques

By spectral techniques, we mean the use of Principal Component Analysis. These tech-
niques were first applied to computer network data, see [33]. They are limited to de-
tection of anomalies that last during a time interval but are restricted to a single space
point, or anomalies consisting of the whole space during a single time frame. The idea
behind using PCA for anomaly detection is that principal components captures regular
or anomalous behavior of data. Principal components are ranked according to their
associated eigenvalue. It is assumed that the k first components capture the normal
behavior, and that the following ones reflect anomalous behavior. In practice, k is set
between 2 and 4. Data instances are projected on the vector space generated by anoma-
lous eigenvectors. If projection is over a certain threshold, the instance is considered to
be anomalous.

To build the input matrix for PCA, such methods consider a matrix L whose rows
are spatial locations, and whose columns correspond to time steps. To detect space-
time anomalies, preprocessing on this matrix is necessary. L × L> and L> × L can be
considered, see [10]. However, Brauckhoff et al. explain in [34] the trouble that comes
from improper preprocessing and show that the only satisfying preprocessing is applying
the Karhunen-Loeve transform. Wavelet transform can also be used as a preprocessing
step, for instance in [35].

PCA was applied to traffic data in [10, 35, 36]. It is used in a basic fashion to environment
data in [37]. Incremental PCA developed in [21] made the technique applicable to
streaming data.

The main con of PCA is that the parameter k and the threshold for projection on
anomalous space are set manually.

3.4 Topology

Topology can be used to analyze spatial topological profiles. Doraiswamy et al. in
[5] compare profiles of different time steps, and label matching extremes regions as
events. Topology is also used by Franke et al. to analyze the topological profile of the
anomalousness scores of all points in [3]. A great pro of topology based techniques is
that they are computationally efficient.

3.5 Distance-based Methods

Distance-based methods are restricted to space-time point anomalies. They consider the
neighbors of the candidate anomalous point according to some distance. Depending on
how far the point is from its neighbors, it is labeled normal or anomalous. Since a point
is compared to its neighbors, those techniques often output contextual anomalies. Such
techniques are implemented in [16–18].
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3.6 Additional Techniques

Some additional techniques are worth mentioning. Pure visualization techniques are not
part of our scope, they can be studied in [38]. Albanese et al. present a new rough set
based space-time point anomaly detection technique in [39]. Periodic event mining is
another branch of the literature.

3.7 Method Testing

From an implementation point of view, the efficiency of a technique is typically assessed
in four main ways. First, one could compare the events outputted to ground truth
events found in the news or in reports. Second, events highlighted by a technique can
be compared to the ones outputted by other methods, as in [15, 35]. A common way to
determine performance metrics on a method is to apply it to controlled semi-synthetic
data. A synthesized event such as a region with anomalous high counts - is injected in
a real life dataset. Neill et al. inject models of simulated disease outbreak in datasets
in [26]. The last method used in literature is user evaluation. Telang et al. in [15] ask
users to rate anomalies outputted by their technique depending on their analysis of the
counts and their visual insight.



Chapter 4

Implementation Framework

4.1 Scope

Now that we have studied how an event detection problem can be split and what the
different detection categories are, let us study the results of two prominent techniques
of the literature. We selected region event detection techniques, for the reasons given
in the problem definition part.

Both of the techniques we implemented are representative of the anomaly detection cat-
egory they belong to. The first one is the Space-Time Permutation Model of SaTScan,
the most prominent scan statistics model. An executable can be found at [7]. SaTScan
was primarily designed for health monitoring tasks in particular disease outbreak de-
tection but was extensively applied to multiple domains such as policy, crime analysis
or environmental data. The second is the method developed by Telang et al., which is
clustering based. It is described and implemented on weather data in [15].

We implement and study the techniques as is. Our study gives an idea of the results that
can be obtained with them. Hopefully it may guide one with an event detection problem
willing to implement an existing method. It may also help to develop a new technique,
because we illustrate the impact of the elements used in each technique. Thus, one can
understand for instance what the effect of using a particular type of baseline is, or the
differences between a clustering method versus a statistical one.

4.2 Dataset Description

The dataset is October 2011 New York City taxi GPS data. For an overview of existing
anomaly detection techniques for traffic data, see [40]. Raw data consists in the time
and location longitude and latitude - of pickups and drop-offs of all taxis in New York
City. We transform this raw data into fixed point time series data, in different ways in
the two experiments. The experiment on SaTScan will be referred as experiment A, the
one on Telangs clustering method as experiment B.

We define a set of spatial points in NYC. Set A includes all road intersections in Man-
hattan. Set B is composed of the centers of every cell of a square grid data. The grid
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extends from the south extremity of Manhattan to the north of Central Park. We study
those regions during the whole month of October 2011. We chose this month because
we know that particular events occur during it, and we can see if and how they are
detected. The time resolution of the dataset is one hour. It is precise enough to detect
anomalies during a day, but still allows for fast computation.

At each time step, we compute the aggregated density of pickups and drop-offs at every
single spatial point. We chose to consider both pickups and drop-offs in order to capture
the maximum information available on taxi activity. Taxi data is heterogeneous and
noisy. So, we then compute a density function which acts as a smoother. In experiment
A, for every point of the set of spatial points, pickups and drop-offs included in an ellipse
centered in the point, of semi-minor axis 35m and semi-major axis 45m are aggregated.
The points included in a rectangle centered in the point of width 270m and height 200m
are added with a decreasing exponential weight based on the distance to the ellipse. Let
us note that this leads to multiple counting. However, it provides an efficient smoother.
For details on the density function see [5]. In experiment B, we use different grid
resolutions. For a 50m x 50m grid, we use the same density function as experiment A.
For other grid resolutions, we use a similar density function. We just increase all the
dimensions ellipse, rectangle proportionally to the size of the grid.

4.3 Parameter Design

For both experiments, we analyze the results outputted by different sets of parameters.
We are interested in the following problems: i.) what is the range of events detected
with those different parameters? ii.) are the results consistent? Those two problems
are not redundant. For instance, when changing parameters, a method may detect new
events while still detecting a subset of the ones detected with the previous parameters.
So it detects a wide range of events with various parameters but still remains consistent.



Chapter 5

SaTScan Space-Time
Permutation Model Analysis

5.1 Executive Summary

SaTScan Space-Time Permutation (STP) model consists in detecting regions whose cells
show a density significantly different from a baseline pre-computed from the whole data
aggregated.

STP technique mostly detects high density prominent regular patterns of the city.
It is a relevant tool to detect day-of-week and nightlife patterns in particular. This is
mainly due to the fact that expected behavior is computed over the whole month.

STP model can be constrained so that is detects clusters under a certain spatial size
and timespan bound. We observe an additive bias: detected clusters tend to extend
up to the spatial bound, and up to the time bound when time bound < 7h.

The algorithm allows to search for ellipse anomalies which better textbffit the road
network than circles.

Finally, the results are mostly stable for different grid resolutions.

5.2 Theoretical Model

We present briefly the STP model. For details see [41].

5.2.1 Region Scanning

Original STP looks for cylinder shape regions. The basis of the cylinder is a circle
including multiple spatial locations at a single time step. The height of the cylinder
corresponds to the time interval considered. STP uses a greedy approach to scan for
those cylinders. Successively every spatial point is taken as the center of the circle basis
of the cylinder, and cylinders of all possible spatial radiuses and temporal heights are
considered. This approach is very computationally expensive. Moreover, in practice we
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are not interested in events which are so large that we cannot interpret them. That is
why we use spatial and temporal bounds to compute the cylinders.

5.2.2 Baseline Computing

We will refer as the total aggregated density over all spatial points and all time steps as
C. C =

∑
z

∑
d czd where czd is the density observed at location z at time d. For each

space-time point, the expected density is computed as uzd = (1/C)(
∑

z czd)(
∑

d czd).
The expected aggregated density is computed as uA =

∑
(z,d)∈A uzd. The underlying

assumption when calculating these expected densities is that the probability of observ-
ing a given density in location z, given that it was observed on time d, is the same for
all times d. Every observation that goes significantly against this assumption is consid-
ered anomalous. This element is key to understand the results that we obtained when
implemented the technique.

5.2.3 Anomalousness Assessment

STP assesses for anomalousness of all space-time cylinders of the dataset. When both∑
z∈A czd and

∑
d∈A czd are small compared to C, cA is approximately Poisson dis-

tributed with mean uA [42]. This is the case for all anomalies whose timespans and
space extensions are small compared to the whole aggregated density. STP builds on
that approximation and uses the Poisson generalized likelihood ratio as a metric of
anomalousness for the cylinder A (cA/uA)cA × ((C − cA)/(C − uA))C−cA . We will refer
to this value as the anomalousness score of the cylinder. The higher the score, the
more likely anomalous the cylinder. Let us note that this baseline is global for both
spatial and time attributes - it does not take into account space-time context.

5.2.4 Preventing Multiple Testing

Since the number of anomalousness scores computed is very high, obtaining a high score
by pure chance may happen. To prevent this multiple testing effect from disrupting the
outcome of the algorithm, STP uses replication. One replication consists in shuffling all
location information and timestamps of density points, and then computing the most
anomalous cluster of the new dataset. The score of an anomalous candidate cluster
obtained on the original dataset is compared to the scores of the most likely cluster
of all the replications. Statistical significance is deduced from this comparison. For
instance, a cluster whose score appears in the top 0.1

In our study, we only ran replications in preliminary studies which are not reported here.
Indeed, the scores of the clusters reported for the original dataset were always ranked
first in 999 replication scores. The studied anomalies scores were never below 500, while
top replicated scores were around 20-30. The reason for this is that the events that we
observe are very striking, they involve densities which peak at 5 times baseline density,
or go as low as 5% of baseline. The significance test was rather thought to apply to
subtler events such as an early disease outbreak.

Why this technique?
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SaTScan is a region anomaly detection technique. It is one of the most - if not the most
- popular region spatio-temporal anomaly detection technique used. It is representative
of the statistical-based anomaly detection category.

SaTScan is declined in several variants. We specifically use the Space Time Permutation
model because it is adapted to univariate density data and it requires only densities and
no complementary data contrary to other available models. Moreover, contrary to many
parametric statistics techniques, it does not assume directly that the normal behavior
follows a theoretical model such as Poisson.

5.3 Building an Iterative SaTScan

No source code is available for SaTScan, one must do with the options implemented
in the available software. In particular, SaTScan may or may not report two clusters
depending on their spatial overlap. Practically speaking, it cannot report two anomalies
which occurred at the same spatial location but at different times.

That is why we built a tool which runs SaTScan in an iterative fashion in order to report
all the clusters detected. At each iteration, the most anomalous cluster is reported, and
the density data is updated so that the influence of this cluster is removed from the
dataset. We do this by modifying the densities of each point of the cluster so that they
equal the baseline calculated at the next iteration.

Such process is computationally expensive. The original SaTScan computes all anoma-
lous clusters once and reports a certain number k of clusters. Instead, we launch the
whole algorithm at every single iteration to output the most anomalous cluster, so com-
putation time is multiplied by k. This was not a hindrance to our study since we are
primarily interested in the nature of the events outputted, computation is not a core
issue.

SaTScan provides visualization tools that we adapted to our approach. We use Google
Earth to visualize the results.

5.4 Dataset Preprocessing

We use the dataset A - see 4.1. The data input format of the software is rather standard
and does not require complex preprocessing. Each instance of the input dataset should
specify the location, the timestamp and the density observed. That is why we could
easily use road intersections as spatial locations input.

5.5 Parameter Design

The parameters of Space-Time Permutation model are: i.) shape of anomalies looked
for - circles or ellipses ii.) Scanning for high density and/or low density anomalies, iii.)
Time bound of anomalies - < 3h for instance, iv.) Space bound for anomalies - for
ellipses the constraint is applied to the semi-minor axis.
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We looked for ellipse shape anomalous cluster. We do not report the results obtained
with circular clusters here. In fact, ellipse clusters can elongate and so better fit the
road network. One could even set the constraint on the ellipse - strong, medium, none
- to penalize or not the elongation of the ellipse. We implemented all constraints. The
time bounds set is {3h, 7h, 24h}. The space bounds set is {49m, 123m, 245m, 613m}.
The scan with no space bound or no time bound was too computationally expensive
to perform. What is more, the results obtained with large bounds led us to think that
unbounded results would not have been relevant. From now we may refer to space size
bound as sb and to time size bound as tb.

5.6 Events features analysis

5.6.1 Shape

Among the three ellipse variants, the most adapted to the problem is the unconstrained
ellipse. First, it best elongates to fit roads. Second, it is computationally more efficient.
Applying no constraint speeds up computation by a factor of roughly 2 to 4.

5.6.2 Size

5.6.2.1 Additive bias

We note that for our dataset, the higher the space bound, the bigger the cluster. This
is what we will refer as the additive bias of the algorithm on our data. Let us examine
visually how the space size of clusters vary with the space bound. We show below the
juxtaposition of the top 20 clusters obtained for all space bounds - for 613m we only
considered the top 10 - with a time bound equal to 7h.

The colors [red, yellow, green, blue] correspond to the space bounds [49m, 123m, 245m,
613m]. We observe that clusters computed with low size bounds are always smaller than
the clusters computed with high bounds. This may seem surprising. Indeed, if one street
is blocked for instance, then the anomaly should be detected on a strictly delimited area,
and should be detected in the same location by all algorithms with a sufficiently high
space size bound. However, the events detected here are not as obvious as this. Those
rather come from vast region with unexpected density. The whole Lower East Side and
East Village districts - bottom right of the picture - are highlighted as anomalous zones
during weekend nights. Those districts are the most prominent areas for nightlife in
NYC. Since the high taxi density is spread over the whole area, the clusters tend to
capture the most of it, that is why they extend to the maximum size allowed by the
bound.

The visual analysis of clusters is confirmed by the graph representing how average cluster
semi-major axis vary with semi-minor axis bound. Here we only considered the top 10
anomalous cluster for all size bounds and we aggregated results obtained with time
bounds 3h and 7h.
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Figure 5.1: Top 20 juxtaposed events,
various space bounds

Figure 5.2: Cluster size with size
bound

Let us note that the average elongation of clusters
- corresponding to the semi-major axis - is close
to proportional to the semi-minor axis bound set.
It is coherent with the idea that the ellipses tend
to extend to the maximum elongation tolerated for
the semi-minor bound set.

5.6.2.2 Theoretical source of the additive
bias

The additive bias is due to the fact that the base-
line computation assumes that locations have the
same behavior over the whole period studied - that
is to say at all hours during all days of the month
studied. This is obviously not the case in reality,

since taxi data show strong day-of-week and hour-of-day trends. So a great proportion
of space-time cells have a density significantly different from their baseline. That is why
adding them to an anomalous cluster results in rising the anomalousness score.

5.6.2.3 Use cases

Now, let us examine what types of events are detected with different size bounds. We
distinguish two main use cases.
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Tendencies - High bound

Setting a high space bound is useful to detect large tendencies. In Fig. 16 for instance,
we noticed that the algorithm with sb = 613m - results showed in blue - detects the
whole area {East Village ∪ Lower East Side} as one anomalous clusters. The timespan
of the cluster is 22:00 to 04:59 on Oct. 22, a Saturday night. It highlights the global
activity of the most active part of the city during the busiest hours of night.

Localized patterns - Low bound

Decreasing the size bound brings about two effects.

i.) Smaller clusters concentrate on the heart of anomalous regions. For instance, consider
the two red - sb = 49m - clusters at the bottom right of the picture. The one at
the bottom has the same date and time span as the blue - sb = 613m - outputted.
It is concentrated on Houston Street, the busiest street of Lower East Side. A large
event could also be split into several clusters. We do not observe this with our top 20
cluster approach, but we would probably notice it if we increased the number of clusters
reported.

Figure 5.3: Appearing events

ii.) New events appear. With a small size bound,
the small anomalies are no more overshadowed by
the big clusters whose test score benefit from the
additive bias. Below example is the juxtaposition
of the top 40 clusters obtained with sb = 123m, st
= 7h and sb = 245m, st = 7h. Clusters obtained
with sb = 245m are represented in green. Among
sb = 123m clusters, we find

• Events already obtained with lower resolu-
tions, in yellow.

• New events

– The street blockage resulting from the
Halloween Parade, on Oct. 31 between
18:00 and 22:59, with taxi density equal
to 0 - in red.

– An anomalously high activity with taxi
density equal to 5.65 the expected den-
sity next to the end of the High Line,
a popular walk, on Oct. 16 - a week-
end day - between 8:00 and 14:00 - in
orange.

Thus, for data similar to ours - where baseline as-
sumptions are not respected - one should set the
spatial size to the approximate size of the events
they are interested in. Running the algorithm with
various space size is necessary to explore the events of a dataset.
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5.6.3 Time

Over all the experiments, we observe a temporal additive bias for time bounds below 7h
only. Below is plotted the average time extension of the top 10 anomalies with the time
extension bound of the clusters, for each space size bound.

Figure 5.4: Time extension
with time bound

We observe that for all space bounds, time bound al-
most equals average timespan for st in 3h, 7h. When
time bound is set at 24h, average time span stays at
7h or only moderately increases. What happens is that
experiments with st in 7h, 24h share most of their top
10 anomalies. That is due to the fact that the period
during which the ratio observed / expected density is
high during a day rarely exceeds 7h - think of morning
rush hours, or a busy night. Some exceptions occur,
for instance cluster number 5 for sb = 123m, st = 24h
is 24-hour long on a Saturday. It is located in a part
of mid town which is busy the week, so the algorithm
detects the whole quiet week-end day as an anomaly.

Let us specify that events detected are consistent for
multiple time bounds. With a smaller time bound, clusters concentrate on the most
anomalous subpart of the event detected with a higher bound, as it was the case when
studying spatial bounds.

5.6.4 Anomalous Densities Analysis

The ratio of the number of high density anomalies to the total number of anomalies for
most experiences is > 90%, and ratio never goes below 70%.

So STP seems biased towards high density anomalies. This can be understood ex-
amining the score function used by the algorithm.

Figure 5.5: STP Score function

Here is represented the value of the test statistic
given observed density and expected density. To-
tal density was set to 1000, but other values result
in the same picture. We set observed and expected
densities ranges so that we obtain ratios observed
/ expected similar to our dataset. The minimum
ratio is 1/10 - top left corner of the grid, the maxi-
mum ratio is 5 - bottom right ratio of the grid. We
observe that test score is more sensitive to high
density ratios. A ratio of 5 is commonly detected
in our experiments, this is the case of the busy
nightlife events detected.

5.6.5 NYC Events Exploration and Stability

In almost all experiments a few prominent event types occupy most of the top 40 anoma-
lies, because they are detected multiple times. For instance, a busy night in an active
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district can be detected all week end nights of the month. 90% of the top 40 events be-
long to three main types. To illustrate this, let us examine the picture of all juxtaposed
clusters obtained with all space bounds and a time bound equal to 7h. We chose 7h
because it is the most versatile time bound. Colors are the same as 5.1.

Figure 5.6: Event exploration

We identify three main types of events.

i.) Busy week-end nightlife in Lower East
Side and East Village - referred as A1.
Usually spans from 22:00 to 4:59. Ratio
observed density / expected density 4.5

ii.) Busy week-end nightlife in West Vil-
lage - A2. Usually spans from 22:00 to
4:59. Ratio observed / expected 3.5

iii.) Quiet week-end night in East Mid
Town and Upper East Side - A3. Usually
spans from 22:00 to 4:59. Ratio observed
/ expected 0.3. This event is harder to
interpret. Upper East Side and East Mid-
town contribute greatly to the total den-
sity of the month. The computing of the
baseline assumes that this relative weight
of the region is always the same. So, at the
busiest hours of the city - during nightlife -
the algorithm expects taxi density to rise
dramatically in those regions. It is not
the case, since nightlife is concentrated
in downtown NYC, so an anomaly is de-
tected.

The times and dates of those events are mostly consistent for the different space bounds
used. Sometimes the different instances of an event type - i.e. the different Saturday
nights in East Village - have a slightly different order in the top 40.

5.7 Computation

For a total number of locations L, a total number of time steps T, a maximum space
location - the maximum number of locations in a cluster - bound l and maximum time
duration bound t, one iteration of SaTScan has complexity O((L× l)(T × t)) For details
see [43]. We remind that we set the number of replications to 0.

Below are the computation times for single iterative of the algorithm.

We observe the dependency in T × t by noticing the vertical shift of the curve when time
bound increases. The dependency in L× l is harder to observe since the spatial bound
is specified in meters, there is no actual space bound counted in number of locations in
the cluster.
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5.8 Possible Improvements

Figure 5.7: Computation times with
various space and time bounds

First, we remind that the unavailability of the
source code made us choose a computationally ex-
pensive method. Using the algorithm provided as
an executable is still a satisfactory option if one
does not want to detect anomalies at the same lo-
cation for different times.

Second, the main improvement that could be made
to the method is the baseline computing. Instead
of aggregating densities over the whole month, one
could take into account day-of-week effect. This
would allow to focus on events such as parades or
concerts for instance.
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Telang et al. Clustering-based
Model Analysis

6.1 Executive Summary

Telangs technique consists in i.) grouping similar space-time cells in homogeneous clus-
ters and ii.) detect which of those clusters are significantly different from their space-time
neighborhood.

Telang method mostly detects high density prominent regular patterns of the city.
It is a relevant tool to detect day-of-week and nightlife patterns in particular. This is
mainly due to the choice of a local baseline. A candidate anomalous region is compared
to its adjacent space-time neighborhood.

The main parameter - the gini threshold - can be set so that the method detects either
broad tendencies - a busy district for instance - or localized patterns - a particular
street activity. The time span of anomalies remains low in general (<7 hours).

The use of such clustering allows to detect irregularly shaped anomalies, such as a
portion of road, or a region with a hole.

Finally, results are mostly stable for different grid resolutions.

6.2 Theoretical Model

We present briefly the method developed by Telang et al. in [15], see the full article
for details. The method can be split into two parts: cluster formation and anomaly
assessment of clusters.

6.2.1 Cluster Formation

The cluster algorithm used is close to DBSCAN on grid cell data. From an arbitrary
unclustered cell, the 3x3 cells around are considered to potentially grow the cluster. A
neighboring cell is added if the dispersion of the new cluster - measured by the gini index
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of the current cluster - remains below a certain pre-defined threshold. The gini index of
a cluster is calculated as

gini(X1, ..., XN ) =
N + 1

N − 1
− 2

N(N − 1)u
(
∑
i

PiXi)

where N is the number of data points in the cluster, u is the mean of the distribution and
Pi is the rank of the data point after sorting the points in the cluster. To be accurate,
cells are not added one by one to a growing cluster. One constraint is that the event
is persistent, so if a spatial location is included in the cluster, all the time steps of the
clusters for this location must be part of the cluster. From the current cluster, the
algorithm considers the following cells sets to be added

• the same spatial locations at the first time step out before the cluster

• the same spatial locations at the first time step out after the cluster

• one adjacent space cell at every time steps included in the cluster

When no more cells can be added to the cluster while maintaining the gini index under
the threshold, the algorithm starts another cluster from an arbitrary cell.

The value of the gini index threshold determines how homogeneous clusters are. Low
gini thresholds will lead to clusters with homogeneous values. High gini thresholds will
lead to clusters with dispersed values.

6.2.2 Anomaly Assessment of Clusters

Computing Neighborhood of cluster For every cluster, the method takes into ac-
count their space-time neighborhoods. For a given cell of spatial row index i0, spa-
tial column index j0, timestamp t0, the neighborhood is composed of cells with i in
[i0 − r, i0 + r], j in [j0 − r, j0 + r], t in [t0 − r, t0 + r], with r being the range of the
neighborhood. To build the neighborhood of a cluster, the neighborhoods of every cell
of this cluster are added to the neighbors set, and then cluster cells are removed from
this set.

Statistical testing The method assesses the anomalousness of computed clusters using
a statistical Likelihood Ratio Test. The alternative hypothesis is that the cluster has
an underlying Poisson distribution P (λr), and that the neighborhood of the cluster -
cluster excluded - has a distribution P (λn) with λr 6= λn. λr and λn are obtained
by maximum likelihood estimation - in practice it is the mean of the values of the
respective distributions. The null hypothesis is that cluster U neighborhood follows a
common Poisson distribution, with the maximum likelihood estimate parameter λg. The
likelihood ratio considered is

−2ln(
likelihood for null model

likelihood for alternative model
)

In the original method developed by Telang et al., this ratio is then compared to the chi
square value corresponding to the desired statistical significance. In our study, as for
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SaTScan, the ratios of the top 40 clusters obtained in preliminary studies are far more
significant than the 5% significance usually considered.

Why this technique?
First, we implemented this technique because it fulfills our criteria of detecting region
anomalies. Second, it uses a variation of DBSCAN, which is one of the most popular
clustering algorithm applied to spatial data. Other clustering-based space-time anomaly
detection methods are likely to use similar clustering algorithms. Then, it is not designed
for a specific use but rather addresses a fundamental problem: detecting persistent events
in grid data. So it could be easily adapted to other applications. Finally, it is ready to
use with no need of implementing additional anomaly detection modules.

6.3 Dataset Preprocessing

We use grid data defined as Set B - see 4.1. We implement various grid resolutions:
70m, 100m, 140m, 190m, 250m, 360m. The grid data only contains cells fully included
in Manhattan. The presence of cells fully or partially outside Manhattan brought about
troubles in the results. The method would detect anomalous low density regions com-
posed of those cells. Indeed, their densities close to zero - not equal to zero due to the
smoother - differ significantly from their spatial adjacent neighbors inside Manhattan
which show regular Manhattan activity.

Let us note that this is an important feature of the technique. Cells which are always at
a very low count will influence the detection of anomalies around them. Their regular
neighbors may be pointed out as high counts anomalies. For instance, this phenomenon
affects cells adjacent to Central Park. Therefore, regions adjacent to Central Park most
likely have an artificially high test statistic. Since those regions do not appear in the top
anomalies that we study, we did not remove Central Park cells. Still, such preprocessing
step should be kept in mind when implementing Telang et al. method.

6.4 Parameter and experiment design

In all our experiments on Telang et al. method, we use a fixed neighborhood range equal
to 2 cells. This is the range used by Telang et al. We replicate experiments with various
gini thresholds: 0.01, 0.03, 0.1, 0.3. Telang et al. set the threshold to 0.01 in their study.
Our data - taxi density - is more heterogeneous that theirs - average temperature. That
is why we implemented higher gini thresholds. Notation: from now, we will refer
to grid resolution as r, and gini threshold as g.

To analyze the features of the technique, we will examine on the one hand indicators
related to core characteristics of anomalies: spatial size, timespan, test statistic score,
anomalous cells counts. On the other hand, we will lead a visual analysis of the outputted
anomalies. We will focus on the top 40 anomalies - that is the 40 anomalies with the
highest test statistics score. This allows to focus on prominent anomalies while giving
an idea of the range of events outputted by a given parameter set.
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6.5 Events Features Analysis

6.5.0.1 Space size

Additive bias

Two cluster sizes matter in this method. The first one is the average size of all homoge-
neous clusters created during the clustering step. This value quantifies how homogeneous
the data is. The second one is the average size of the clusters detected as anomalies. It
gives a notion of the homogeneity of anomalies. We report those two average sizes for a
fixed resolution of 140m and various gini thresholds.

Figure 6.1: Cluster size with gini threshold, r
= 140m

First, we observe that both sizes increase
with gini threshold. This is consistent
with the fact that higher gini thresholds
allow for more heterogeneous clusters, so
clusters grow bigger. More importantly,
let us note that anomalies average sizes
are much higher than overall average clus-
ter size. It seems that the method favors
big anomalous region. So, as for SaTScan,
we observe an additive bias.

City coverage analysis

Let us now study the spatial size of clus-
ters - that is the space extension, and not
the size of the clusters as their number of
cells. Below we show the global city cov-
erage of NYC with various g ∈ [0.01, 0.03, 0.1, 0.3] for a 140m grid resolution. By city
coverage, we mean the subset of the spatial points monitored which appear at least once
in an anomalous cluster of the top 40 anomalies. It gives a good idea of how big the
outputted anomalous clusters are. Those points are showed below, each point being the
center of one grid cell. The numbers on the pictures are minor visualization defects.
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We observe that with the 0.01 gini threshold, anomalous clusters are detected only
around specific busiest parts of NYC: along Broadway, next to Grand Central and Penn
Station, in the East Village and Lower East Side. With such threshold, the technique
detects localized patterns. City coverage gradually increases with gini threshold. With
the higher threshold - g = 0.3 - it includes almost all Manhattan North of Houston
Street.
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(a) r = 360m, g = 0.3

(b) r = 140m, g = 0.3

Use cases

Grid resolution may amplify the effect of gini thresholds. Lower grid resolutions tend
to increase spatial anomalies sizes. Indeed, data is aggregated in larger grid cells and
thus is more homogeneous, which leads to larger clusters. We observe the opposite effect
with fine grid resolutions. Thus, the effects of grid resolution and gini threshold add up
or oppose each other. We distinguish two main use cases of the technique.

i.) Broad tendencies

The displayed anomalous cluster for {r = 360m, g = 0.3} below is typical of the outputted
anomalies for such parameters. The cluster is ranked 6 in test statistic - we will from
now refer to test statistic rank with the #6 notation, that is to say it is the sixth most
anomalous cluster. It includes most of the monitored area and lasts between 18:00 and
23:59 on a week day. This is the most active hours of the day for taxis. It should be noted
that for big clusters, the neighborhood is mostly composed of the same spatial locations
at adjacent time steps, so the analysis is mostly temporal. With a high gini threshold
and a low resolution, most of the observed clusters span over most of Manhattan.

With a high gini threshold and a fine grid resolution, the tendencies observed are less
spread. We show the cluster #7 of {r=140m, g=0.3}. The #7 cluster lasts from 1:00
to 2:59, and includes the districts with the most active nightlife in NYC: East Village,
Lower East Side, Nolita. Even if those neighborhoods do not have the exact same
nightlife patterns, the high gini threshold allows clustering to group them together.

ii.) Localized patterns With a low gini threshold and high grid resolution, more punctual
events can be detected. The example given is obtained with {r=140, g=0.01}. It is
cluster #24, it only spans from 7:00 to 7:59 on a weekday. It highlights the morning
activity of Penn Station. The number of pickups is high as many commuters arrive by
train.

With low gini threshold and low resolution, the technique focuses on localized patterns,
but fails to detect them properly. In fact, outputting a couple of large spatial cells makes
the identification of the event tedious. It is illustrated by the example {r=500, g=0.01}.
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(a) r = 140m, g = 0.01

(b) r = 500m, g = 0.01

In this example cluster #8 lasts from 8:00 to 9:59 on a week day. The interpretation of
this event is unclear due to the low resolution. The cell at the extreme left of the cluster
includes a part of Broadway. The one at the center is close to Central Station. The
high values detected at those points could be explained by high activity on Broadway
and/or next to Central Station. It is hard to say that a single event is at the source
of the creation of this homogeneous cluster - remember that a low gini threshold leads
to homogeneous cells in the cluster. The best we can do is trying to understand the
influence of the spatial features included in the cluster. In short, a low gini threshold
should output localized patterns, but a low resolution makes it difficult to understand
what exactly caused the anomaly, because cells are too large.

A versatile tool

This study shows that Telang method can be used in different ways depending on the
gini threshold used. Even if the impact of grid resolution is limited, the choice of r
should not result in an extremely opposite effect against the one of the gini threshold.
Practically and broadly speaking, grid resolutions <140m are the most relevant given
our urban data set. A gini threshold of 0.01 outputs very localized pattern, g > 0.1
outputs tendencies. g = 0.03 is the most versatile choice.

6.5.1 Time Size

Let us examine how temporal lengths of events vary with g and r. In the plot below,
the curves show how average cluster timespan in the top40 anomalies vary with gini
threshold.

First, we note that tendencies are similar for the different grid resolutions - except for
140m, which is slightly different. Average timespan is broadly similar with g = 0.01
and g = 0.03, between one and two hours - with the slight exception of r=360m. Is
is also very close between g=0.1 and g=0.3. The big gap lies between 0.03 and 0.1.
We could explain this by the patterns of the data. Taxi pickups and drop-offs is quite
heterogeneous, so for g < 0.03, most clusters stick to a one-hour length. When g reaches
0.1, the cluster sizes become so big that the clusters neighborhoods consist mostly of
their purely temporal neighbor, so the algorithm would give high test scores to regions
which stand out temporally. So when g increases over 0.1, the same temporal stand-
out periods are detected - nightlife or early activity mostly, and so the average cluster
timespan remains stable.
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6.5.2 Anomalous Densities Analysis

Figure 6.4: Average event timespan
with gini threshold

It appears that the top-ranked anomalies are al-
most always high density anomalies. The mean
proportion of high density anomalies in the top40
anomalies of all our experiments - g takes values in
[0.01, 0.03, 0.1, 0.3] and r in [100, 140, 190, 250,
360] - is > 97%.

So it appears that as STP this method favors the
detection of high density anomalies. This is
due to the nature of the test statistic. The test
performed assesses whether a given region has a
mean cell count significantly different from the
mean value of its space-time neighborhood. The
absolute difference between means is more impor-
tant for usual high density anomalies - typically 4
times the mean density - than for usual low density anomalies.

6.5.3 Shape

The method outputs many irregular clusters. The use of a homogeneity-constrained
DBSCAN algorithm creates clusters with very little shape constraint, cells are only
grouped when they have similar densities. The main pro is that clusters can fit irregular
urban patterns. We note two main irregular patterns outputted.

The first one consists in elongated clusters. It is particularly noticeable with low gini
thresholds, when clusters are rather small. The example in 6.5 shows how clusters can
fit parts of the road network. It is cluster #28 obtained with g= 0.01, r = 100m, lasting
from 19:00 to 19:59. It fits a part of Broadway, which in that case shows anomalous
high activity.

Figure 6.5: Cluster #28 fits Broad-
way

The second pattern consists in region with holes.
The example given in 6.6a is cluster #17 obtained
with g = 0.3, r = 100m, lasting from 7:00 to 8:59. It
shows how a small region can be isolated inside the
anomalous cluster. It can be due to too high or too
low density compared to the rest of the cluster. We
observe here that the region close to Grand Cen-
tral is excluded from the cluster, so that the clus-
ter captures the global early activity of the eastern
part of Midtown. Since it corresponds to train ar-
rivals rush hours, we believe that it was excluded
because of too high density. However, we did not
find the complementary Grand Central cluster in
the top40 anomalies.

The drawback of outputting irregular clusters is
that sometimes event interpretability is lost. In
6.6b cluster #30 was obtained with g = 0.03, r =
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(a) Cluster #17 features a hole

(b) Cluster #30: losing interpretation

Figure 6.6: Irregular shape events

100m. It displays an elongated shape with pro-
longations in various directions and a belt-shaped
part. We could not find any city pattern matching
those shapes. However, those clusters remain in
small number in our study.

6.5.4 Test Score

We already observed particular features of the test statistic used by the method. It favors
high density anomalies and big regions. Now let us understand how it globally varies
with parameters. Let us examine in 6.7 how the test score vary with the parameters.

Figure 6.7: Test score with various r and g

We note that test score increases with gini
threshold and decreases with grid resolu-
tion. It is due to the fact that high gini
thresholds and low grid resolutions both
drive densities up, and we saw that the
used test statistic is sensitive to high den-
sities. The higher g, the bigger the clus-
ters, the higher the total density. With
low grid resolutions, the individual cell
densities increase because aggregation of
taxi presence is performed over a larger
spatial area. Moreover, multiple counting
is more important.

Test score is useful to compare events sig-
nificance for a fixed g and r. However, it is not consistent to use it to compare events
obtained with different parameters. Indeed, a global tendency in Midtown would have
a much higher score than a road blockage for a parade, but the two events are relevant.
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6.5.5 NYC Events Exploration and Stability

As for SaTScan, we note that most prominent patterns appear multiple times in the top
40 anomalies outputted. Often the two most prominent events occupy more than 60%
of the top 40.

Broadly speaking, those most prominent events are robustly detected for various grid
resolutions. The impact of grid resolution on Telang et al. method is similar to the
effect of space bound on SaTScan. Grid resolution affects the event detection task in
three ways.

1) The same event is detected with multiple grid resolutions, but not with the exact
same and time space extension. In those cases, as with SaTScan the anomaly detected
with a lower grid resolution concentrates on the heart of the event - e.g. the busiest
hours for nightlife.

2.) A single event may be detected by the algorithm with high grid resolution as two
different events located in two close places. This was observed for SaTScan too. In the
case of nightlife, East Village and Lower East side may be grouped on weekends with
low resolution, and detected separately with high resolution.

3.) Events appear when grid resolution decrease, as for SaTScan.

We give an idea of the exploration performed and the stability of the results with a
visual comparison of the city coverage obtained with a fixed g = 0.01 and varying grid
resolution. We chose a low gini threshold because it is easier to distinguish between
clusters when all are juxtaposed. In 6.8, each color circle corresponds to a type of event.
For instance, several high density anomalies observed at the same approximate location
on the same hours on week days will be highlighted as one single event type.

We indicate the events detected in the table below. All are high density anomalies.

Color Location Day Start hour Duration Comment

red NE Midtown Weekday 8am 1h/2h Early activity

orange Penn Station Weekday 8am 1h/2h Train arrivals

blue Lincoln Center Variable 10pm 1h End of shows

green NW Midtown Weekend 7pm 1h/2h

white Upper East Side Weekday 7am 1h

yellow EastV/LowerEV Weekend 11pm 2h Nightlife

purple West Village Weekend 11pm 2h Nightlife

Most of those recurrent events can be easily interpreted. A couple of them are still
unclear to us. Upper East Side being a wealthy area, people may tend to take more
taxis to commute to work, which could explain the events circled in white.

Let us note that decreasing grid resolution leads to unveil more isolated events. Events
outputted in the r = 70m experiment include a particular week end afternoon next to
central park for instance, and other non-recurrent events.
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(a) r = 70m, g = 0.01 (b) r = 100m, g = 0.01

(c) r = 140m, g = 0.01

(d) r = 190m, g = 0.01

Figure 6.8: Overall event classification

6.6 Computation

The computation time of Telang algorithm is roughly O(nmp2ln(p)) where n is the
number of space-time cells, m the number of neighbors per grid cell and p the average
cluster size - see [15]. Below are the computation times with all g and r used. The
experiments were performed with a processor AMD Opteron 6276 2.3 GHz and 1TB of
RAM.

The influence of cluster size being p2ln(p), it is low compared to the influence of the
number of cells. Increasing gini threshold increases average cluster size, while refining
grid resolution increases cell number. That is why computation time is mostly driven
by grid resolution.
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6.7 Possible Improvements

Figure 6.9: Computation times for various r and g

The main application of Telang
method on our taxi dataset is
to detect high density regular
patterns of the city. This is
mainly due to the baseline which
grants high score to regions dif-
ferent from their adjacent neigh-
borhoods, and which takes into
account absolute density. The
homogeneity constraint restrict
timespan to several hours. De-
pending on the gini threshold, it
outputs broad tendencies or lo-
calized patterns. Even though
grid resolution has limited effects
on results, extremes should be
avoided since they interfere with
the influence of the gini parameter.

To change the type of events detected by the method, we could consider the following
changes.

• Incorporating an expectation to the baseline. Instead of treating raw absolute
densities, a monthly or day-of-week adapted mean could be subtracted, or be used
to compute a ratio. Further time series analysis could be performed to generate
an expectation. This may lead to output patterns which would not be regular
patterns of the city since those patterns would have been removed from the data
before.

• Changing neighborhood definition. Depending on the objective of the analysis, the
neighborhood range could be different for time and space. The neighborhood could
even be composed of non adjacent cells. For instance, time steps corresponding to
the same hours of the day for different days, or for other week days, could compose
the neighborhood instead of adjacent time steps. This would allow to incorporate
regular patterns to the baseline too.



Chapter 7

Comparison and Conclusion

7.1 Big Picture Comparison of STP and Telang et al.

Let us identify the common points and main differences of the two methods implemented.
First, both mostly identify day-of-week and hour-of-day patterns, because their baselines
do not take into account those two effects. Both show a spatial additive bias: bigger
anomalous clusters tend to have higher anomalousness score. They are also more sensi-
tive to high counts anomalies. Both techniques can be used to detect broad tendencies or
localized patterns depending on how their parameters are set. Their results are mostly
consistent when parameters vary.

The clustering method ensures that the clusters computed have rather homogeneous
value, whereas SaTScan clusters may be heterogeneous. STP clusters have regular ellipse
shapes, while Telang et al. clusters may show irregular shapes. Computation shows
opposite trends for the two clusters. Using Telang et al. method to detect localized
patterns requires to set a fine grid resolution, which is associated to high computation
time. Using STP for the same purpose is associated with low space bounds and so low
computation time. More diverse events were found with Telang et al. method, so it may
be better suited for event exploration.

7.2 Conclusion and Possible Future Work

We showed in our theoretical study that event detection on space-time point data can
be split into independent problems. We presented the most prominent solutions to those
problems. Moreover, we implemented two major techniques. We tried to understand
both their use cases as is and the influence of every aspect of them. We showed that the
most important aspect of those two techniques are the definition of the baseline. Both
baselines led to detect day-of-week and hour-of-day effect, but except the most striking
events, the events outputted by the two techniques differ.

When having a space time point event detection problem, one may choose to implement
one of the two techniques illustrated in this report. One could also choose to combine
various elements presented in the study in order to tailor ones approach to their specific

35



Bibliography 36

problem. In applied research in the field there still exist great opportunities for incre-
mental progress, since many combinations of solutions to the sub-problems highlighted
were not implemented.

Further work could consist in include in the comparison techniques from the unaddressed
main categories of space-time anomaly detection: PCA and Topology. Then, it would be
interesting to measure the detection power gap between a parallel monitoring technique
and a space time technique. One could also focus on traffic data and tailor a particular
baseline to better address irregular events. Finally, application fields could be mapped to
the most adapted category or to the most adapted baseline computing given the typical
features of their data.
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