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Abstract. We present an interpretable framework for path prediction that lever-
ages dependencies between agents’ behaviors and their spatial navigation envi-
ronment. We exploit two sources of information: the past motion trajectory of
the agent of interest and a wide top-view image of the navigation scene. We pro-
pose a Clairvoyant Attentive Recurrent Network (CAR-Net) that learns where to
look in a large image of the scene when solving the path prediction task. Our
method can attend to any area, or combination of areas, within the raw image
(e.g., road intersections) when predicting the trajectory of the agent. This allows
us to visualize fine-grained semantic elements of navigation scenes that influence
the prediction of trajectories. To study the impact of space on agents’ trajectories,
we build a new dataset made of top-view images of hundreds of scenes (Formula
One racing tracks) where agents’ behaviors are heavily influenced by known ar-
eas in the images (e.g., upcoming turns). CAR-Net successfully attends to these
salient regions. Additionally, CAR-Net reaches state-of-the-art accuracy on the
standard trajectory forecasting benchmark, Stanford Drone Dataset (SDD). Fi-
nally, we show CAR-Net’s ability to generalize to unseen scenes.

1 Introduction

Path prediction consists in predicting the future positions of agents (e.g., humans or ve-
hicles) within an environment. It applies to a wide range of domains from autonomous
driving vehicles [1] and social robot navigation [2, 3], to abnormal behavior detection
in surveillance [4–7]. Observable cues relevant to path prediction can be grouped into
dynamic and static information. The former captures the previous motion of all agents
within the scene (past trajectories). The latter consists of the static scene surrounding
agents [8–10]. In this work, we want to leverage the static scene context to perform
path prediction. The task is formulated as follows: given the past trajectory of an agent
(x-y coordinates of past few seconds) and a large visual image of the environment (top-
view of the scene), we want to forecast the trajectory of the agent over the next few
seconds. Our model should learn where to look within a large visual input to enhance
its prediction performance (see Fig. 1).

Predicting agents’ trajectories while taking into account the static scene context is
a challenging problem. It requires understanding complex interactions between agents
and space, and encoding these interactions into the path prediction model. Moreover,
scene-specific cues are often sparse and small within the visual input, e.g., a traffic sign
within the scene. Finally, these cues might be far from the agent of interest.

Recent research in computer vision has successfully addressed some of the chal-
lenges in path prediction. Kitani et al. [11] have demonstrated that the semantic seg-
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Single-source	
Attention

Path	Prediction

Multi-source	
Attention

Predicted Observed

Fig. 1. CAR-Net is a deep attention-based model that combines two attention mechanisms for
path prediction.

mentation of the environment (e.g., location of sidewalks and grass areas) helps to pre-
dict pedestrian trajectories. Ballan et al. [12] modeled human-space interactions using
navigation maps that encode previously observed scene-specific motion patterns. These
methods rely on scene semantic information collected in advance. Instead, our method
relies on raw images, which are easier to obtain, and our method has the potential to in-
fer finer-grained scene semantics and functional properties of the environment. To this
end, Lee et al. [13] have used raw images to predict agents’ trajectories. However, their
method does not provide a way to understand what visual information within the scene
is “used” by the model to predict future trajectories.

We address the limitations of previous path prediction methods by proposing a vi-
sual attention model that leverages agent-space interactions and enhances prediction ac-
curacy. Inspired by the recent use of attention models in image captioning [14], machine
translation [15] and object recognition [16, 17], we introduce the first visual attention
model that can predict the future trajectory of an agent while attending to the salient re-
gions of the scene. Our method is able to attend to any region, or collection of regions,
in the image. Attention based models can be broadly categorized into single and multi-
source attention models. Single source attention models (e.g., DRAW [18, 16]) attend to
features extracted from a single area of the image, while multi-source attention models
(e.g., soft attention from [14]) use a combination of features from all areas of the image.
In this paper, we propose CAR-Net, a deep neural network architecture which predicts
future trajectories - hence being Clairvoyant - by processing raw top-view images with
a visual Attentive Recurrent component. Our attention model combines both single-
source and multi-source attention mechanisms. By leveraging both attention mecha-
nisms, our prediction framework makes use of a wider spectrum of agent-space depen-
dencies. Moreover, CAR-Net is simple to implement and train. Hence, it facilitates the
use of trajectory prediction in a wide range of other vision tasks such as object tracking
[4], activity forecasting [19] and action localization [20].

To study if our proposed architecture is able to learn observable agent-space corre-
lations, we build a new dataset where agents’ behaviors are largely influenced by known
regions within a scene (e.g., a curve in the road). As opposed to other popular datasets
for trajectory prediction, the proposed dataset allows to understand the effect of the
environment on agents’ future trajectories. Because the dataset is composed of static
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scenes, future trajectories are not affected by confounding factors such as the behavior
of other agents. This disentangles the contributions of scene semantic information and
of other agents’ interactions, in the task of path prediction. To build this new dataset,
we have collected more than two hundred real-world Formula One racing tracks and
computed the vehicles’ optimal paths given the tracks’ curvatures using equations in
[21]. In this context, the geometry of the road causes the vehicle to speed up or down,
and steer. Our attention mechanism succeeds at leveraging elements of the tracks, and
effectively predicts the optimal paths of vehicles on these tracks. As part of our contri-
butions, this new dataset for path prediction and learning agent-space correlations will
be released publicly. We further show that the accuracy of our method outperforms pre-
vious approaches on the Stanford Drone Dataset (SDD), a publicly available trajectory
forecasting benchmark where multiple classes of agents (e.g., humans, bicyclists, or
buses) navigate outdoor scenes. CAR-Net is an intuitive and simple model that achieves
state-of-the-art results for path prediction, while enabling the visualization of semantic
elements that influenced prediction thanks to attention mechanisms.

2 Related Work

Trajectory forecasting. Path prediction given the dynamic content of a scene has been
extensively studied with approaches such as Kalman filters [22], linear regressions [23],
or non-linear Gaussian Processes [24–26, 2]. Pioneering work from Helbing and Mol-
nar [27–29] presented a pedestrian motion model with attractive and repulsive forces
referred to as the Social Force model. All these prior works have difficulty in model-
ing complex interactions. Following the recent success of Recurrent Neural Networks
(RNN) for sequence prediction tasks, Alahi et al. [30] proposed a model which learns
human movement from data to predict future trajectories. Recently, Robicquet et al. [31]
proposed the concept of social sensitivity with a social force based model to improve
path forecasting. Such models suffice for scenarios with few agent-agent interactions,
but they do not consider agent-space interactions. In contrast, our method can handle
more complex environments where agents’ behaviors are severely influenced by scene
context (e.g., drivable road vs trees and grass).

Recent works have studied how to effectively leverage static scenes in the path pre-
diction task. Kitani et al. [11] used semantic knowledge of the scene to forecast plau-
sible paths for a pedestrian using inverse optimal control (IOC). Walker et al. [1] pre-
dicted the behavior of generic agents (e.g., vehicles) in a scene given a large collection
of videos, but in a limited number of scenarios. Ballan et al. [12] learned scene-specific
motion patterns and applied them to novel scenes with an image-based similarity func-
tion. Unfortunately, none of these methods can provide predictions using raw images of
scenes. Recently, Lee et al. [13] proposed a method for path prediction given the scene
context using raw images. However, all these methods have limited interpretability. Our
method is instead designed for this specific purpose: providing an intuition as to why
certain paths are predicted given the context of the scene.

Visual Attention. Related work from Xu and Gregor [14, 18] introduces attention
based models that learn to attend the salient objects related to the task of interest. Xu et
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A={ }

Fig. 2. Overview of CAR-Net architecture. Note that ”//” block is concatenation operation.

al. [14], present soft and hard attention mechanisms that attend to the entire image. Soft
attention applies a mask of weights to the image’s feature maps. Since the associated
training operation is differentiable, it has been applied to a wide range of tasks. The
hard attention mechanism is not differentiable and it must be trained by Reinforcement
Learning. The non-differentiability of this method has led to scarce applications.

Other attention models apply dimensionality reduction to the image. Their goal is to
accumulate information over a sequence of partial glimpses of the image. The recurrent
attention model introduced in [16] attends to a sequence of crops of the image. It has
been used in many tasks such as digit classification and person identification [32, 18].
Visual attention models have also been widely applied to many other applications such
as image classification [33], image captioning [14, 34], and video classification [35].
Inspired by these works, we hereby use visual attention mechanisms in our model to
perform trajectory prediction.

3 CAR-Net

Scene context is necessary to predict the future behavior of agents. For instance, a cy-
clist approaching a roundabout changes his path to avoid collision. Such deviations in
trajectories cannot be predicted by only observing the agent’s past positions. This mo-
tivates us to build a model that can leverage observable scene context while predicting
an agent’s future path. We introduce CAR-Net, a deep attention-based model for path
prediction. It performs trajectory prediction using raw top-view images of scenes and
past trajectories of agents. CAR-Net is able to attend to the most relevant parts of the
input image. In this section we first describe the overall architecture of our model. Then,
we explain our visual attention module.

3.1 Overall Architecture

The objective of our model is to predict the future path of an agent given its past tra-
jectory and a top-view image of the scene. Our model uses a feature extractor to derive
feature vectors from the raw image (Fig. 2). Then, a visual attention module computes a
context vector ct representing the salient areas of the image to attend at time t. Finally,
in the recurrent module, a long short-term memory (LSTM) network [36] generates the
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future position of the agent (xt+1, yt+1) at every time step, conditioned on the context
vector ct, on the previous hidden state ht, and on the previously generated position of
the agent (xt, yt). Our model is able to capture agent-space interactions by combining
both the scene context vector and the past trajectory of the agent.

3.2 Feature extractor module

We extract feature maps from static top-view images using a Convolutional Neural
Network (CNN). We use VGGnet-19 [37] pre-trained on ImageNet [38] and fine-tuned
on the task of scene segmentation as described in [39]. Fine-tuning VGG on scene
segmentation enables the CNN to extract image features that can identify obstacles,
roads, sidewalks, and other scene semantics that are essential for trajectory prediction.
We use the output of the 5th convolutional layer as image features. The CNN outputs
L = N × N feature vectors, A = {a1, ..., aL}, of dimension D, where N and D
are the size and the number of feature maps outputted by the 5th convolutional layer,
respectively. Each feature vector corresponds to a certain region of the image. Fig. 2
depicts the feature extractor module.

3.3 Visual attention module

Given a high-dimensional input image of a scene, we want our model to focus on
smaller, discriminative regions of this input image. Using a visual attention method,
the most relevant areas of the image are extracted while irrelevant parts are ignored.
The general attention process works as follows. A layer φ within the attention mecha-
nism takes as input the previous hidden state ht of the LSTM and outputs a vector φ(ht)
that is used by the attention mechanism to predict the important areas of the image. The
vector φ(ht) is then applied to feature vectors A (through a function fatt), resulting in
a context vector ct+1 that contains the salient image features at time step t+ 1:

ct+1 = fatt(A, φ(ht)). (1)

Our visual attention module can be substituted with any differentiable attention
mechanism. Moreover, it can use a combination of several attention methods. Provided
that fatt and φ are differentiable, the whole architecture is trainable by standard back-
propagation. We propose three variants for the differentiable attention module that are
easily trainable. The first method extracts visual information from multiple areas of the
image with a soft attention mechanism. The second method extracts local visual infor-
mation from a single cropped area of the image with an attention mechanism inspired
by [18]. We refer to the first and second methods as multi-source and single-source at-
tention mechanisms, respectively. Finally, the attention module of CAR-Net combines
both attention mechanisms, allowing our prediction framework to learn a wider spec-
trum of scene dependencies.

CAR-Net attention. Learning agent-space interactions, and encoding them into the
path prediction model is a challenging task. The scene-specific cues are sometimes
sparse and spread throughout the entire image far away from the agent, or small within
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(a) (b)

Fig. 3. Our multi and single-source attention mechanism

a specific area of the image. Single and multi-source attention mechanisms attend re-
spectively to localized and scattered visual cues in the scene. When the relevant visual
cues are scattered all over the input image, a multi-source attention method can suc-
cessfully extract a combination of features from multiple key areas of the image. In
contrast, when the relevant visual information is localized in one particular area of the
image, single-source attention methods are a good fit to attend to that specific region.
Note that multi-source attention does not necessarily reduce to single-source attention
and they complement each other.

To leverage both local and scattered visual cues in path prediction, the core at-
tention module in CAR-Net combines the two context vectors obtained from single
and multi-source attention mechanisms. The combination is done by concatenating the
context vectors from single-source csst and multi-source cms

t attention mechanisms,
ct = [csst , c

ms
t ]. The attention module in Fig. 2 depicts the process. More technical

details about multi and single-source attention mechanisms can be found in Sec. 3.3.
CAR-Net outperforms both single and multi-source attention mechanisms, proving its
ability to leverage the strengths of the two attention mechanisms.

Multi-source attention. The multi-source attention mechanism applies weights to all
spatial areas of the scene based on their importance, and outputs a context vector con-
taining relevant scene context from multiple regions of the image. First, the weights
matrix αt+1 is calculated by passing the hidden state ht through a fully connected
layer φ with weight Wms and bias bms. Later, the context vector cms

t+1 is calculated by
element-wise product of the weight matrix αt+1 and the feature maps A. Fig. 3(a) and
Eq. 2 show the entire process:

cms
t+1 = fatt(A, φ(ht))

= a · φ(ht) = A · αt+1 (2)
αt+1 = softmax(Wmsht + bms).

The soft (multi-source) attention mechanism described in [14] calculates the weight
matrix αt+1 conditioned on both the previous hidden vector and the features of the
image. However, our αt+1 relies only on the previous hidden vector. The distinction
is important because for path prediction tasks, we do not have the future images of a
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scene. Moreover, it reduces the computation cost without impacting the performance of
the model.

Single-source attention. The single-source attention mechanism illustrated in Fig. 3(b)
attends to a single local area in the image. To do so, we adapt the DRAW attention
mechanism - which was initially designed for the unsupervised setting of digit gen-
eration [18] - to the supervised learning setting of path prediction. The single-source
attention mechanism attends to the region of the image defined by a local grid of N
Gaussians. The center (gX , gY ) of the grid, the stride δ of the grid, and the variance
σ of all N Gaussians, are predicted by the model at each time step t + 1 by mapping
linearly the hidden state ht to attention parameters (gX , gY , δ, σ). The stride of the grid
controls the “zoom” of the local area attended by the model. As the stride gets larger, the
grid of Gaussians covers a larger area of the original image. The exact position (νix, ν

i
y)

of each Gaussian i on the grid is found using the center and the stride of the grid as in
Eq. 3.

νiX = gX + (i−N/2− 0.5)δ

νiY = gY + (i−N/2− 0.5)δ
(3)

The resulting grid of Gaussians defines two filter-bank matrices FX and FY , using
Eq. 4. Using these filter-bank matrices, the single-source attention mechanism is able
to attend the region of the image defined by the local grid of Gaussian: FX and FY are
convoluted with the feature mapsA of the image, as in Eq. 5. The resulting context vec-
tor csst+1 contains scene context from to the single local area of the image corresponding
to the grid of Gaussians.

FX [i, a] =
1

ZX
exp
(
− (a− νiX)2

2σ2

)
FY [j, b] =

1

ZY
exp
(
−

(b− νjY )2

2σ2

)
.

(4)

csst+1 = fatt(A, φ(ht))

= FX(ht)
TAFY (ht).

(5)

Note that indexes (i, j) refer to Gaussians in the grid and that indexes (a, b) refer to loca-
tions in the feature maps. The normalization constants Zx, Zy ensure

∑
a FX [i, a] = 1

and
∑

b FY [j, b] = 1.

3.4 Implementation details

We trained the LSTM and the attention module from scratch with the Adam optimizer
[40], a mini-batch size of 128, and a learning rate of 0.001 sequentially decreased every
10 epochs by a factor of 10. All models are trained for 100 epochs, on the L2 distance
between ground-truth and predicted trajectories. As in many sequence prediction tasks,
the training and testing process is slightly different. At training time, the ground-truth
positions are fed as inputs to the LSTM. In contrast, at test time, the predictions of
positions (xt, yt) are re-injected as inputs to the LSTM at the next time step.
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4 Experiments

We presented CAR-Net, a framework that provides accurate path predictions by lever-
aging spatial scene contexts. We perform a thorough comparison of our method to state-
of-the-art techniques along with comprehensive ablation experiments. We then present
insights on the interpretability of our method. We finally show the generality and ro-
bustness of CAR-Net by experimenting with different datasets.

4.1 Data

We tested our models on the following three datasets that all include trajectory data and
top-view images of navigation scenes.

Stanford Drone Dataset (SDD) [31]. To show that CAR-Net achieves state-of-the-
art performance on path prediction, we tested the model on SDD, a standard benchmark
for path prediction [13, 30, 31]. This large-scale dataset consists of top-view videos of
various targets (e.g., pedestrians, bicyclists, cars) navigating in many real-world out-
door environments in a university campus (20 different scenes). Trajectories were split
into segments of 20 time steps each (8s total), yielding approximately 230K trajectory
segments. Each segment is composed of 8 past positions (3.2s), which are fed to the net-
work as sequential inputs, and 12 future positions (4.8s) used to evaluate predictions.
This is the standard temporal setup for path prediction on SDD. We use raw images
to extract visual features, without any prior semantic labeling. We adopt the standard
benchmark dataset split for SDD.

Formula One Dataset. Studying the influence of space on agents’ trajectories is
complex since agents’ behaviors are influenced not only by the semantics of the naviga-
tion scene, but also by other factors such as interactions with other agents. For instance,
a pedestrian could stop as they meet an acquaintance. We release a Formula One (F1)
dataset, composed of real-world car racing tracks and their associated trajectories. This
dataset provides a controlled environment to evaluate how well models can extract use-
ful spatial information for trajectory prediction. In the F1 dataset, the agents’ behaviors
can be largely explained by the geometry of the tracks (e.g. the curve of an upcom-
ing turn). As opposed to other popular datasets for trajectory prediction (e.g. SDD),
F1 dataset allows for evaluations in static settings where future trajectories are not af-
fected by confounding factors such as the behavior of other agents. This disentangles
the contributions of the spatial information and of other agents interactions in the task
of trajectory prediction.

The top-view racing track images were obtained from Google Maps. On top of
them, we simulated trajectories corresponding to an optimal driving pattern, referred
to as “optimal trajectories” and computed with the equations presented in [21]. We
used hand-segmented roads as inputs for the computations of optimal trajectories. Note
that those optimal trajectories illustrate complex navigational patterns that depend on
far away scene dependencies. The F1 dataset includes 250 tracks and more than 100K
trajectories from different cities of Brazil, Canada, Columbia, Mexico, France, USA and
other countries and will be available to the public for research purposes. Sample tracks
are shown in Fig. 4. Car trajectories are split into 24 time step segments: 8 input past
positions and 16 future positions used for evaluation. We opted for 16 future positions
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Fig. 4. Examples of scenes captured in the proposed F1 dataset. We annotated each track with the
associated optimal racing trajectory.

for evaluation, rather than 12 like in SDD, since the prediction task is simpler due to
stronger agent-space dependencies. We split racing tracks in the F1 dataset into an 80%
train set, 10% validation set, and 10% test set. The test racing tracks are totally unseen
locations, they do not overlap with the training nor validation set racing tracks.

Car-Racing Dataset [41]. In order to derive further insights on how agent-space
dependencies influence our model’s predictions, we experimented with the Car-Racing
dataset, a simpler racing track dataset that we synthesized. The Car-Racing dataset is
composed of 3,000 tracks of various curvatures and road widths that we generated
with the Car-Racing-v0 simulator from the OpenAI gym. We simulated (1) the opti-
mal trajectories for each circuits, and (2) trajectories following the middle of the road at
constant speed. Racing trajectories were split into 24 time-step segments, 8 input past
positions and 16 future positions used for evaluation, yielding approximately 500K seg-
ments. We split racing tracks in this dataset into an 80% train set, 10% validation set,
and 10% test set, which do not overlap.

Optimal racing trajectories. The ideal racing trajectory used in Car-Racing and
F1 dataset is defined as the trajectory around a track that allows a given vehicle to
traverse the track in minimum time. To calculate these optimal race trajectories, we
segmented the roads by hand and computed the associated optimal racing paths using
physics simulation. These simulations are based on 2D physical models from [21, 42].

4.2 Evaluation Metrics and Baselines

We measure the performance of our models on the path prediction task using the fol-
lowing metrics: (i) average displacement error - the mean L2 distance (ML2) over all
predicted points of the predicted trajectory and the ground-truth points, (ii) final L2
distance error (FL2) - the L2 distance between the final predicted position and the final
ground-truth position.

To perform an ablation study in Section 4.3 and show that our model achieves state-
of-the-art performance in Section 4.4, we compare CAR-Net to the following baselines
and previous methods from literature:

– Linear model (Lin.) We use an off-the-shelf linear predictor to extrapolate trajec-
tories under the assumption of linear velocity.
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Car-Racing Car-Racing Formula 1
Middle Optimal Optimal

Model ML2 FL2 ML2 FL2 ML2 FL2

T-LSTM 10.4 15.5 5.84 10.2 21.2 41.3
I-LSTM 9.71 14.1 5.62 9.5 20.8 40.1
MS-LSTM 7.35 12.7 5.30 8.71 18.9 37.8
SS-LSTM 6.36 9.91 4.64 7.63 14.7 28.9
CAR-Net 5.0 8.87 3.58 6.79 13.3 25.8

Table 1: Quantitative results of our methods on the Car-Racing dataset with middle and optimal
trajectories and the F1 dataset. We report the Mean L2 error (ML2) and the Final L2 error (FL2).
CAR-Net outperforms all models by combining single-source and multi-source attention outputs.

– Social Forces (SF) and Social-LSTM (S-LSTM). We use the implementation of the
Social Forces model from [43] where several factors such as group affinity have
been modeled. Since the code for Social-LSTM is not available we compare our
models with a self-implemented version of Social-LSTM from [30].

– Trajectory only LSTM (T-LSTM) and Whole Image LSTM (I-LSTM). These mod-
els are simplified versions of our model where we remove the image information
and attention module, respectively.

– Multi-Source only LSTM (MS-LSTM) and Single-Source only LSTM (SS-LSTM).
Our models using only multi-source attention and single-source attention mecha-
nisms, respectively.

– DESIRE. A deep IOC framework model from [13]. We report the performance of
the model DESIRE-SI-IT0 Best with top 1 sample.

4.3 Ablation Study

We performed an ablation study to show that prediction accuracy improves when com-
bining single-source and multi-source attention mechanisms, which suggests that they
extract complementary semantic cues from raw images. We analyzed the performances
of baseline models and of CAR-Net on the racing track datasets (Car-Racing and For-
mula One datasets). We present our results in Table 1.

We observe similar results on both racing track datasets. First, I-LSTM only slightly
outperforms T-LSTM. This seems to be because the large feature maps extracted from
each racing track are too complex to significantly complement the dynamic cues ex-
tracted from agents’ past trajectories. Second, attention models (MS-LSTM, SS-LSTM,
CAR-Net) greatly outperform I-LSTM. This suggests that visual attention mechanisms
enhance performance by attending to specific areas of the navigation scenes. We show
in Section 4.5 that these attended areas are relevant semantic elements of navigation
scenes - e.g. an upcoming turn. Note that SS-LSTM achieves lower errors than MS-
LSTM. This is due to racing track images being large, and relevant semantic cues being
mostly located close to the car. Finally, CAR-Net outperforms both MS-LSTM and SS-
LSTM on all datasets. We think it is due to robustly combining the outputs of single-
source and multi-source attention mechanisms.

General remarks. For the Car-Racing dataset, models perform better on the pre-
diction of optimal trajectories than middle trajectories. This is due to the average pixel
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Model ML2 FL2
Lin. 37.11 63.51
SF [43] 36.48 58.14
DESIRE-SI-IT0 Best [13] 35.73 63.35
S-LSTM [30] 31.19 56.97
T-LSTM 31.96 55.27
I-LSTM 30.81 54.21
MS-LSTM 27.38 52.69
SS-LSTM 29.20 63.27
CAR-Net 25.72 51.80

Table 2: Performance of different baselines on predicting 12 future positions from 8 past posi-
tions on SDD. We report the Mean L2 error (ML2) and the Final L2 error (FL2) in pixel space of
the original image. Our method, CAR-Net, achieves by far the lowest error.

distance between consecutive positions being larger for middle trajectories than for the
optimal trajectories. Also, we trained the models on 1K tracks for middle trajectories,
instead of 3K for optimal trajectories.

4.4 Trajectory Forecasting Benchmark

CAR-Net outperforms state-of-the-art methods on the task of predicting 12 future po-
sitions (4.8s of motion) from 8 past positions (3.2s) on SDD benchmark, as reported in
Table 2 (both lower ML2 and FL2 error). Note that the performance of DESIRE-SI-IT0
Best in [13] is provided for the task of predicting 4s of motion. We linearly interpolated
this performance to obtain its performance on predicting 4.8s of motion and reported
the interpolated number in Table 2.

The T-LSTM baseline achieves a lower ML2 error than Linear, SF, and S-LSTM
models. However, the gaps between the FL2 errors of T-LSTM and SF or S-LSTM
models are narrow, suggesting that the T-LSTM model tends to be relatively inaccurate
when predicting the last future time-steps. We observe that S-LSTM performs poorly
compared to MS-LSTM - especially in terms of FL2 error. We believe multi-source
attention performs better due to scattered key semantics in SDD scenes. In all experi-
ments, CAR-Net outperforms baselines methods regarding all metrics. Moreover, our
model outperforms DESIRE with top 1 sample (DESIRE Best). This is consistent with
[13] suggesting that regression-based models such as CAR-Net are a better fit for use
cases where regression accuracy matters more than generating a probabilistic output.

Generalization to unseen locations. CAR-Net generalizes to unseen locations in all
datasets. This suggests that our model leverages observable scene features, rather than
location-specific information. First, CAR-Net achieves better accuracy than other base-
line methods on F1 test set, which is exclusively composed of unseen F1 racing tracks.
Second, 9/17 (53%) locations in the SDD test set are unseen. The remaining 8/17 (47%)
locations in the SDD test set are visually similar to training locations (seen locations).
We evaluate our trained model’s performance on the seen and on the unseen SDD test
locations, separately. CAR-Net achieves similar performances on both seen and unseen
test SDD locations - mean L2 distance of 23.87 and 26.93 pixels on the seen and unseen
locations, respectively - proving its ability to generalize to unseen SDD locations.
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Fig. 5. Qualitative results of MS-LSTM, SS-LSTM, and CAR-Net (rows) predicting trajectories
on Car-Racing, F1, and SDD datasets (columns). CAR-Net successfully leverages both single-
source and multi-source attention mechanisms to predict future paths.

Quantitative analysis of the impact of agent-space interactions. To analyze CAR-
Net’s ability to leverage agent-space interactions, we split the test set of SDD into scenes
whose geometries are complex and likely to influence the trajectories of agents (e.g.
scenes with grass lawns, pavements, buildings), and scenes whose observable context
varies little across the top-view image (e.g. an open field with no roads, grass, etc). We
refer to these scenes as semantically complex and simple, respectively. Details about
the splitting process and sample images of complex and simple scenes can be found
in the supplementary material. We tested CAR-Net (that uses the scene context) and
T-LSTM (that does not use any scene context) on SDD’s semantically complex and
simple test scenes. Our results are reported in Table 3. CAR-Net and T-LSTM achieve
similar performance on simple scenes, where scene semantics should not typically af-
fect the trajectories of agents. In contrast, CAR-Net achieves much better performance
than T-LSTM on complex scenes, where scene semantics are likely to highly influence
the trajectories of agents. This experiment shows CAR-Net’s ability to successfully
leverage scene context over T-LSTM.

Model Complex Simple
T-LSTM 31.31 30.48
CAR-Net 24.32 30.92

Table 3: Performance of T-LSTM and CAR-Net on SDD semantically complex and simple
scenes. We report the Mean L2 error (ML2) in pixels space of the original image. Our method,
CAR-Net, is able to effectively use the scene context to predict future trajectories.
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Fig. 6. Qualitative analysis: (a) Very long-term path prediction on the Car-Racing dataset. Predic-
tions stay on track, showing that our model successfully uses scene context for path prediction.
(b) By manually moving the attention to other parts of the image, we show that prediction heavily
depends on the geometry of the map. (c) When manually imposing the initial car position to be
off-road, the predicted trajectory comes back on the road using the visual cues extracted by the
attention mechanism.

4.5 Qualitative analysis

Visualization details. In all figures, ground-truth and predicted trajectories are plotted
in red and blue, respectively. Past positions are circled in black. We display the weight
maps of the multi-source attention mechanism over time: the model attends to the re-
gions highlighted in white. The attention grids of the single-source attention mechanism
are also displayed over time: yellow dots represent the center of the attention grid, and
rectangles represent bounding boxes of the attention grid.

Short-term predictions. Fig. 5 shows sample trajectories predicted by our models on
the datasets used in our experiments. On racing track datasets (Car-Racing and F1), we
expect the region of the road close to the car to contain salient semantic elements. We
observe that MS-LSTM successfully attends to the area around the car. On the mid-left
and mid-center figures, we observe that the attention grid of SS-LSTM is initially off
(white rectangle), before jumping to a small area close to the car, thereby identifying the
relevant visual information. As shown in the bottom row, CAR-Net focuses on a narrow
region of the image close to the car, using the single-source attention. It is also able to
attend to further areas such as the next curve, using multi-source attention, proving its
ability to leverage both attention mechanisms on racing track datasets.

On SDD, where key semantic elements are scattered, the multi-source attention
mechanism successfully attends to multiple relevant visual areas (top and bottom right
images). We observe that on SDD the multi-source attention attends to regions that
get larger over time. This may reflect a growing prediction uncertainty. The single-
source attention grid attends to areas further ahead of the agent on SDD, compared to
racing track datasets. For instance, the mid-right figure shows an example where the
attention grid drifts ahead of the agent. It seems that attending close to the agent would
not capture all salient semantics (e.g., the geometry of the upcoming intersection), so
attention grids reach ahead.

Very long-term trajectory prediction on Car-Racing dataset. In this section we
present qualitative results on the task of predicting future positions beyond 4.8s on
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the Car-Racing dataset, as a complementary result. We do not claim that our model
achieves similar path prediction performance beyond 4.8s on real-world datasets. Fig.
6(a) shows CAR-Net’s predictions of 100 consecutive time steps of a middle trajectory
on the Car-Racing dataset. We observe that predictions remain on the road over time.
Note that the initial few positions of the agent are not helpful to predict future trajec-
tories on very long time intervals (e.g. after a couple turns from the initial position).
The fact that the predictions stay on the road proves that CAR-Net successfully extracts
semantic understanding from the scene context in this case. We observe that both single
and multi-source attention mechanisms are consistent with the predicted positions over
time, as they attend to the salient parts of the scene - e.g., the curve in front of the car.

Qualitative analysis of agent-space interactions. We further investigate the ability of
our model to leverage agent-space dependencies on racing track datasets. First, we show
that road geometry has a large influence on the prediction of future positions. As shown
in Fig. 6(b) left, on the Car-Racing dataset, we manually place the visual attention on
an irrelevant part of the road which is oriented along the top-right direction. We observe
that the model predicts positions following a similar top-right axis, while the expected
trajectory without any scene information would follow a top-left direction. We observe
similar behaviors in the bottom-left image of Fig. 6(b). The same experiment on the
real-world F1 dataset results in similar behaviors, as shown in Fig. 6(b) right.

Second, we study whether CAR-Net is robust enough to recover from errors or
perturbations by manually setting the agent’s past positions outside the road. The left
image in Fig. 6(c) shows the result of this experiment on the Car-Racing dataset, using
the model trained on the middle trajectories. The predicted future trajectory successfully
comes back on the road and remains stable afterwards, showing our model’s ability to
recover from strong prediction errors on Car-Racing dataset. The right image in Fig.
6(c) shows a similar experiment on the real-world F1 dataset. Since this dataset is more
challenging than the Car-Racing dataset, we apply a smaller perturbation to the past
trajectory of the agent, moving it slightly off the road. We observe that this perturbation
does not affect the predicted trajectory which follows the road.

5 Conclusions

In this paper, we tackle the trajectory prediction task with CAR-Net, a deep attention-
based model that processes past trajectory positions and top-view images of naviga-
tion scenes. We propose an attention mechanism that successfully leverages multiple
types of visual attention. To study our model’s ability to leverage dependencies be-
tween agents’ behaviors and their environment, we introduce a new dataset composed
of top-view images of hundreds of F1 race tracks where the vehicles’ dynamics are
largely governed by specific regions within the images (e.g., an upcoming curve). CAR-
Net outperforms previous state-of-the-art approaches on the SDD trajectory forecasting
benchmark by a large margin. By visualizing the output of the attention mechanism, we
showed that our model leverages relevant scene semantic features in the prediction task.
In future work, we plan to add agent-agent interactions to our framework and investigate
whether our method can leverage these dynamic cues.
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