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ABSTRACT

The in-progress Fake News Challenge is a public challenge
tasking competitors to develop a stance detection tool that
could ultimately be incorporated into a larger automatic fact-
checking pipeline.

The challenge pairs 1,648 unique headlines and 1,669
unique article bodies to produce 49,972 body-headline pairs.
Each of the body-headline pairs are labeled with either
"Unrelated", "Discusses”, "Agrees", or "Disagrees”. It is the
goal of the stance detection task to predict these labels.

We applied the concepts of neural attention and conditional
encoding to long short-term memory networks (LSTM).

Our best model achieves a score of 0.808 improving over the
current best competition score of 0.795.

DATAAND SCORING

Data

Article Headline Length Distribution
The median headline has 10 words (first quartile 8, thrid quartile 13, minimum 1, maximum 40).
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Article Body Length Distribution
The body headline has 315 words (first quartile 206, thrid quartile 477, minimum 3, maximum 4937).
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RESULTS

Hyperparameter Selection

Sensitivity of Competition Score to Sequence Truncation

BOW and CEA LSTM models perform best at shortest and longest truncation lengths.
Basic LSTM and Attention LSTM models perform best at shortest truncation lengths.

Sensitivity of Competition Score to Hidden Layers

Basic LSTM and CEA LSTM models perform best with 2 layers.
BOW and Attention LSTM models perform best with more hidden layers.
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Test Performance of Selected Models

Competition Scores of Selected Models
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Fitted on train set (60%) and evaluated on dev set (20%)

Sensitivity of Stance F1 Scores to Truncation Length
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Fitted on train set (60%) and evaluated on dev set (20%), shown for epoch with maximal competition score

MODELS
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ATTENTION

» Let all vectors be column vectors.
» Define the attention window the be the first L output states

produced by the LSTM.

* Let k be the dimension of the hidden state, and N be the total

sequence length.

« LetY € R¥*L = [hy, ..., hy] be a matrix of the output states of the

LSTM in the attention window.

+ Let e, € RE be a vector of 1s.
o Let WY, Wh wP wh e RE*k and w € R¥ be trainable matrices.

» Afinal state h* is produced as follows

tanh(WYY + Whhyel)
softmax(w’ M)

=Ya'
tanh(WPr + WZhy)

Q

h*

Fitted on train and dev set (80%) and evaluated on test set (20%)
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CONCLUSION

« Attention and conditional encoding allows for the
model to utilize information from longer
sequences without sacrificing performance

« Approach may extended to bidirectional models
and more complex attention mechanisms

 Downsampling and a custom loss function may
improve performance
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